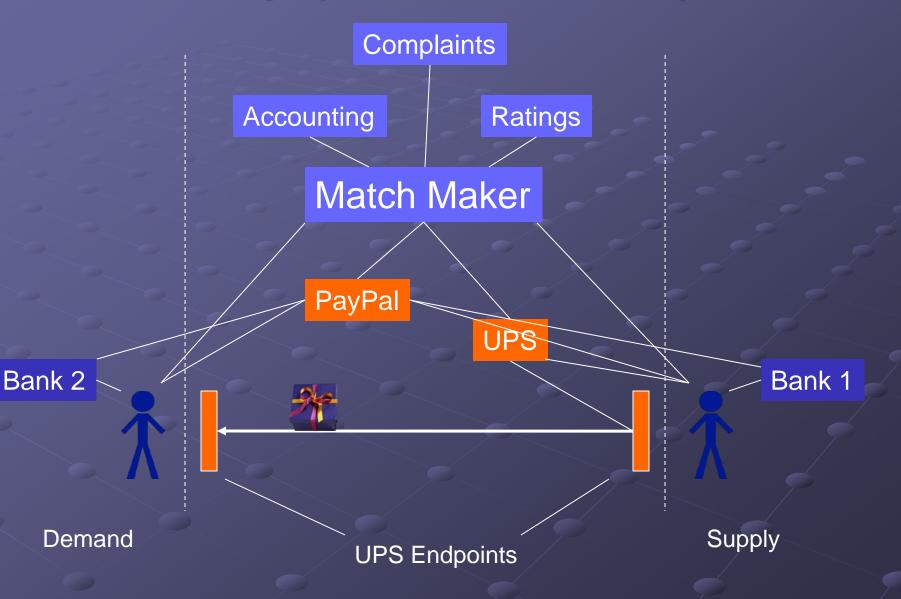
HTPC - High Throughput Parallel Computing (on the OSG)

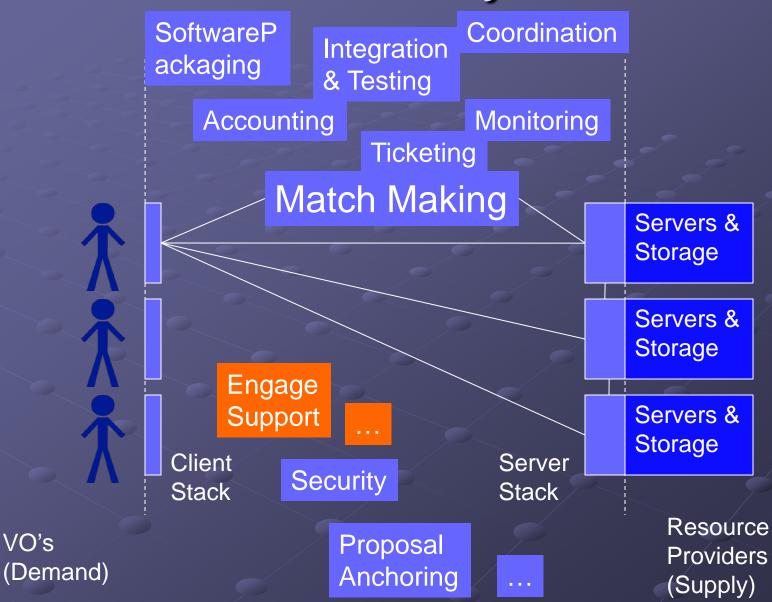
> Dan Fraser, UChicago OSG Production Coordinator Horst Severini, OU (Greg Thain, Uwisc)

OU Supercomputing Symposium Oct 6, 2010

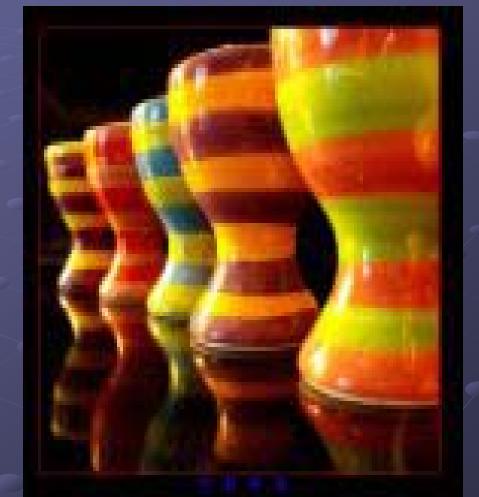
Rough Outline


What is the OSG? (think ebay) HTPC as a new paradigm Advantages of HTPC for parallel jobs How does HTPC work? Who is using it? The Future Conclusions

Making sense of the OSG OSG = Technology + Process + Sociology 70+ sites (& growing) -- Supply contribute resources to the OSG Virtual Organizations -- Demand VO's are Multidisciplinary Research Groups Sites and VOs often overlap OSG Delivers: ~1M CPU hours every day I Pbyte of data transferred every day



eBay (more realistic)


Where does HTPC fit?

The two familiar HPC Models High Throughput Computing (e.g. OSG) Run ensembles of single core jobs Capability Computing (e.g. TeraGrid) A few jobs parallelized over the whole system Use whatever parallel s/w is on the system

HTPC – an emerging model

Ensembles of smallway parallel jobs (10's – 1000's)

Use whatever parallel s/w you want © (It ships with the job)

Tackling Four Problems

Parallel job portability

Effective use of multi-core technologies

Identify suitable resources & submit jobs

Job Management, tracking, accounting, …

Current plan of attack

Force jobs to consume an entire processor Today 4-8+ cores, tomorrow 32+ cores, … Package jobs with a parallel library HTPC jobs as portable as any other job • MPI, OpenMP, your own scripts, ... Parallel libraries can be optimized for on-board memory access All memory is available for efficient utilization Submit the jobs via OSG (or Condor-G)

Problem areas

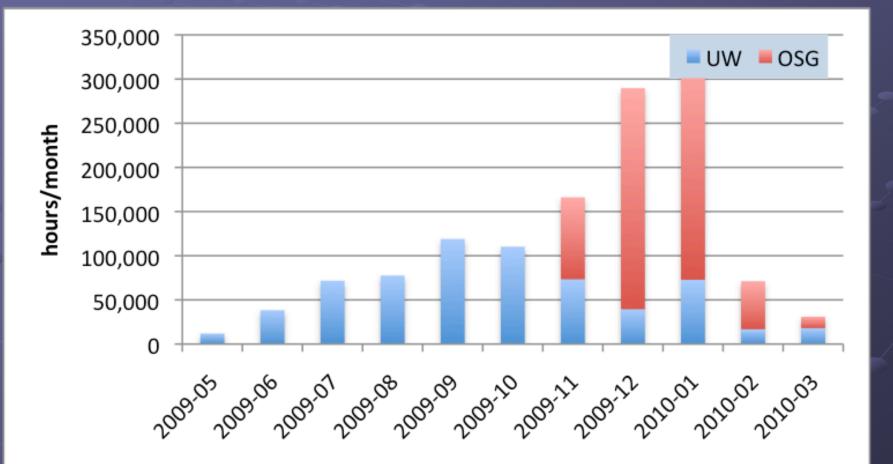
Advertising HTPC capability on OSG
 Adapting OSG job submission/mgmt tools
 GlideinWMS

 Ensure that Gratia accounting can identify jobs and apply the correct multiplier
 Support more HTPC scientists
 HTPC enable more sites

What's the magic RSL?

Site Specific We're working on documents/standards PBS (host_xcount=1)(xcount=8)(queue=?) LSF (queue=?)(exclusive=1) Condor (condorsubmit=('+WholeMachine' true))

Examples of HTPC users:


Oceanographers: Brian Blanton, Howard Lander (RENCI) Redrawing flood map boundaries ADCIRC Coastal circulation and storm surge model Runs on 256+ cores, several days Parameter sensitivity studies Determine best settings for large runs 220 jobs to determine optimal mesh size Each job takes 8 processors, several hours

Examples of HTPC users:

Chemists
UW Chemistry group
Gromacs
Jobs take 24 hours on 8 cores
Steady stream of 20-40 jobs/day

Peak usage is 320,000 hours per month
 Written 9 papers in 10 months based on this

Chemistry Usage of HTPC

OSG sites that allow HTPC OU The first site to run HTPC jobs on the OSG! Purdue Clemson Nebraska San Diego, CMS Tier-2

Your site can be on this list!

Future Directions

More Sites, more cycles!

More users
 Working with Atlas (AthenaMP)
 Working with Amber 9
 There is room for you...

• Use glide-in to homogenize access

Conclusions

• HTPC adds a new dimension to HPC computing – ensembles of parallel jobs This approach minimizes portability issues with parallel codes Keep same job submission model Not hypothetical – we're already running HTPC jobs Thanks to many helping hands

Additional Slides

Some of these are from Greg Thain (UWisc)

The players

Dan Fraser Computation Inst. University of Chicago **Miron Livny U** Wisconsin John McGee RENCI Greg Thain **U** Wisconsin **Key Developer**

Funded by NSF-STCI

Configuring Condor for HTPC

Two strategies:
Suspend/drain jobs to open HTPC slots
Hold empty cores until HTPC slot is open

http://condor-wiki.cs.wisc.edu

How to submit

```
universe = vanilla
requirements = (CAN_RUN_WHOLE_MACHINE =?= TRUE)
+RequiresWholeMachine=true
executable = some job
arguments = arguments
should_transfer_files = yes
when_to_transfer_output = on_exit
transfer_input_files = inputs
queue
```

MPI on Whole machine jobs

Whole machine mpi submit file

universe = vanilla requirements = (CAN_RUN_WHOLE_MACHINE =?= TRUE) +RequiresWholeMachine=true

executable = mpiexec arguments = -np 8 real_exe should_transfer_files = yes when_to_transfer_output = on_exit

transfer_input_files = real_exe

queue

How to submit to OSG

universe = grid GridResource = some_grid_host GlobusRSL = MagicRSL executable = wrapper.sh

arguments = arguments

should_transfer_files = yes

when_to_transfer_output = on_exit

transfer_input_files = inputs

transfer_output_files = output

queue