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Introduction

" Time-periodic phenomena are abundant in nature
" (Can be analyzed experimentally or numerically

" 'Traditional approach to numerical simulation:
a Capture the physics in language of mathematics
= Partial differential equations (PDEs)

= Natural oscillators tend to present themselves
as nonlinear dynamical systems

o Discretize the governing equations in space
" Finite element method (FE) for structures

o Temporal discretization
" Time-marching methods (Newmark, HHTa)
= Computationally expensive; transient effects

= Efficient alternatives exist (harmonic balance)
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Introduction

" Presented here: a novel time-domain solution method
o High dimensional harmonic balance (HDHB) approach
a Discuss its key features and limitations

o Rapid computation of steady state solutions
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a Provide a framework for implementation into a nonlinear FE solver

" Demonstrate its capabilities
a Solve three structural dynamics problems

o Relevant to the field of flapping flight
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Harmonic balance theory

" Begin with a general nonlinear dynamical system (FE eqns)

MX + CX =F(X,?)

= Assume the field variables are smooth and periodic in time
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" Pourier series expansion of state vector and nonlinear restoring force vector

Ny N Na N
X(1)=X" + E[ X cos (kat) + X* sin(ka)t)] F(r)=F"+ E[ F*cos (kwt) + F* sin(ka)t)]
k=1 k=1

= (lassical harmonic balance (HB) method

a  Approach to solve for the Fourier coefficients X4(¥)

Ny = Chosen # of harmonics

N;=2N,+1

o Substitute Fourier expansions for X(f) and F(¢) into the governing equation

o Perform a Galerkin projection w.r.t. the Fourier modes to obtain

~0 ~0
xl _deqf
A QM+ wAQC-F =0 Q=| : X :
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o (Np)x(Ngpr) L

0

Ji

JNH

0 %

-k 0

A(N7)x(Nr)

a Using this procedure to solve large-scale nonlinear systems can be cumbersome

o  Overcome with the high dimensional harmonic balance (HDHB) approach

|
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HDHB approach

Problem is cast from Fourier domain into the time domain

Fourier coefficients are related to time domain variables

through a discrete Fourier transform operator E

Q=EQ F =EF
The time domain variables are represented
at uniformly spaced intervals for one
period of oscillation
xl(to) deof(to)
Q- : xi(tn) : t, =

xl(tZNH)

27n
wN;,

£, (1)
Ny \"2Ny (Np)X(Ngpp)
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HDHB system can be written in terms of a time-derivative operator D

0’D’QM + wDQC-F =0

D=E'AE

Solution can be obtained numerically using an iterative root-finding scheme;

Newton-Raphson method or pseudo-time marching
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Features ot the HDHB approach

. Advantages Typical time-marching solution

0.1 T I T l T I T | T I T | T I T l T I T

o Solves for one period of steady-state
0.075 —

response; computationally efficient
0.05 —

L

a Solved for in the time-domain
0.025

o Easy implementation into large-scale
computational fluid and structural
dynamics codes

" Drawbacks

-0.025 ‘

-0.05

-0.075

I

Possibility of aliasing

005k
a Can produce nonphysical solutions 005 )

o Due to treatment of nonlinear terms o

a Developed dealiasing techniques oos|-

o Involves filtering of the field variables oos|- —_

Py Steady-state response |

Memory required > time-marching (HDHBE solution)
| 1 1
9.7 9.8 9.9

wn

9.6 10

a Fully populated solution arrays; N, X Ndof o)
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Implementation into a FE solver foduction

- HDHB approach
- Key features
- FE implementation

* Framework presented here has been successtully Application
. . . - Plunging 1D string
implemented into an in-house FE solver named ATFEM _2D dragonfly wing
. . . . - Oscillating 3D airfoil
" Begin with HDHB formulation of FE equations Conclusions

®*D*QM + wDQC - F =0
"  Solve the HDHB system using the Newton-Raphson (NR) method
a The solution array (Q) requires an initial guess; likely to be incorrect

a The total residual (Rygp) is the sum of partial residuals

ﬁTOT = ﬁDYN + ﬁDAMP + ﬁINT — ﬁEXT ﬁDYN = CUZDZQM ﬁDAMP = CUDQC
a Incrementally adjust Q using the Jacobian matrix (J) until Ryo;= 0
_ _ oR oR OR ORnr  OR
AG = J ' Roor = tor _ ORpyn | ORpawe | ORint _ ORexr
A 0@ aQ Q| oQ  aQ
aRDNYN — 0’D*M 8RDL‘\MP — wDC Readily available in any FE solver
0Q 0Q with implicit time-integration

" No major modifications to the FE data structure are required!
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Plunging 1D string Numerical method
- HDHB approach

- Key features
- FE implementation

= String membrane stretched between two rigid airfoils Application
- Plunging 1D string

" Geometrically nonlinear 1D string elements - 2D dragonfly wing
- Oscillating 3D airfoil

Conclusions

Rigid Airfoil Rigid Airfoil

C String Membrane

Elements 10-30 Nodes 11-41

Elements 1-10 Elements 40-50
Nodes 1-11 Nodes 41-51
= M 1 . Eing = 3%10° Pa String modulus
aterial properties: L,=0.137Tm String length
a Result in a first natural A=2.74x10* m? Cross-sectional area
frequency of f; = 14.2 Hz Py =0.274 kg/m Density per unit length
Y : ' T,=4.11 N String pre-tension
- Flapping 1S implemented C=0.05 Viscous damping coefficient

with time-periodic boundary conditions
o Inertial loading is related to the flapping acceleration
o Simulations are normalized using the inertial loading parameter F

w(X,1)= Asin(wt) F=Aw’
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| Results for the plunging string

" Compare solutions obtained using the HDHB and HHTa time-marching methods
=  Shown below: simulations for F'= 100 (4 = 0.05 and /= 7.1 Hz)

= HDHB approach renders steady state solutions 10*-10° times faster than HHTo
.~ Denotes Ny = 2

HHTa Solution HDHB2 Solution
0.1 T T T T T I T T T T [ T T T T | T T T T 0.1 T T T T T I T T T T [ T T T T | T T T T
0.05 0.05
N OF N0
005 005 ——\\/
401_||||o|||||||||||||||1|_ 401_||||o|||||||||||||||1|_
' .04 0.08 012 0.16 0.2 ' .04 0.08 012 0.16 0.2
X X
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Frequency response curves

Generated by incrementally advancing the frequency (@) forward or backward

Previous solution is used as the initial guess for the NR solver

Frequency marching generates 00
two solution branches:

upper (+) and lower (-)

0.05

Focus on the normalized 0.04
midpoint Z-deflection |
— 0.03
(WL/z/ Ly) E
Favorable comparison 0.02

between HDHB and HHT o,
solutions for F = 0.1 and 1

Aliasing errors occur for 0

O HHT
—— HDHBI +
.... HDHBI -
—— HDHB3 +
---+ HDHB3 -
—— HDHBS +
-+++ HDHBS -
—— HDHBII +
--++ HDHBII -

F =10 and 100; highly nonlinear °

Dealiasing techniques are not
effective for this problem

University of Oklahoma

Frequency response curve for F =1

Resonance peak at /= 14.6 Hz (w/ w, = 1.03)
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Flapping dragontly wing Introduction

Numerical method

- HDHB approach

- Key features

- FE implementation

» X Application
- Plunging 1D string
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- 2D dragonfly wing
- Oscillating 3D airfoil
Conclusions

Dragonfly hindwing specimen Y Finite element model

" Modeled using geometrically nonlinear von Karman plate elements
= Flapping motion—prescribed sinusoidal rotation about the root
do(t) = Asin(2mfyt) A=0.42045rad  fo=33.4Hz

" Material properties Strongest veins along leading edge (dark blue)

Density o = 1200 kg/m? E =60 Gpa t=0.135 mm
Viscous damping C=0.05 Anal veins near root (red)

Length L=3cm E=12GPa t=0.135 mm
Poisson ratio v=20.25 Wing membrane (light blue)

1% natural frequency f; = 5/, E=3.7GPa t =0.025 mm

= HDHB solutions require amplitude marching (incremented by 44)
» HHTa solutions require marching from ¢ = Os to 2s with At = 10-s (1~2 days)
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HHTa solution

= Fvolution of a transient response

Isometric view Rear view ‘
X
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HDHBO6 solution

Renders steady state response

View

Rear

ic view

Isometr
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Computational economy [ | "
B (3—© HDHB
B —— HHTa N
------- STEADY-STATE
0.017 = &> LINEAR HDHBI N
0.016 - —
_ 00151 Nu=6
k] O ]
B»—1
0014 - —
0013 - —
0012 - _

n ! i ]
Focu§ on peak displacement ot 1
amphtudes <WL) 11 IIIIII| 1 IIIII_IJ 1 IIIIII| 1 IIIIII| 1 IIIIII| 11 IIIIII| e

_ _ 10° 10t 100 10?7 10" 10" 100 107

" Increasing NV, requires more o
NR iterations and a smaller Method AA (rad) NR Iterations T*

. . HHTo. - - 1.000E+0
amphtude mncrement (AA) LIN HDHB - 1 1.717E-5

_ , HDHB1 0.1 29 1.522E—4

" Normalized computation HDHB2 0.1 41 6.975E—4

: " HDHB3 0.1 105 2.979E-3
times (T*) can be decreased HDHBA 0.01 335 4305E_2

- HDHB5 0.0001 15,902 1.144E+0

by orders of magnitude HDHB6 0.00001 160,747 1.015E+1
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Oscillating 3D continuum atrfoil

Modeled using geometrically nonlinear hexahedral

elements with 1soparametric interpolation (Q1)
Approximately 10* spatial degrees of freedom

Material properties

Elastic modulus E =70 GPa

Density 0 =2700 kg/m?
Length L=341m
Poisson ratio v=0.33

Prescribed sinusoidal boundary conditions at z = L

v(t) = Asin (27tfot) A=0.05m
fo =120 Hz

HDHB solutions require amplitude marching
with 44 = 0.1m

HHTa solutions require marching from
t = Os to 5s with At = 2 x1073s (t~9 days)

10/06/2010 University of Oklahoma
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Finite element model
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Solutions for 3D airfoil

" Focus on first principal stresses (6,) at a fixed location 1n space

* Compare maximum stress (6,™%) for each period of oscillation

First Principal Stre

1.6E+09
1.4E+09
1.2E+09
1E+09
8E+08
6E+08
4E+08
2E+08
0
-2E+Q8
-4E+Q8

0.8

0.6

o, [GPa]

04

Observe 02
0, here

t/T
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Computational economy ,

Compare steady state values for

maximum first principal stress (6,%¥)

Normalized computation times (T*)
indicate computational economy

For this problem, choice of Ny
does not affect # of NR iterations

olmax[GPa]

1.1~

(G—© HDHB
STEADY-STATE

< LINEAR HDHBI

i . i N,=2 i
Required memory increases | |
. . 0.7 | | | | | 1 111 | | | 1111
dramatically with N, " 1072 0
. . T*
necessitating
the use of a Method NR iterations Max memory (GB) T
HHTo - 0.074 1.000E+0
supercomputer LIN HDHB 1 0.512 7.228E—4
(OSCER) HDHB1 32 0.562 2.141E-3
HDHB2 30 1.604 3.922E-3
= Memory can be a HDHB3 30 3.171 6.877E-3
T HDHB4 30 5.374 1.165E—2
key limitation to HDHB5 31 8.072 1.898E—_2
HDHB approach HDHB6 31 11.216 2.809E-2
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C O n Clu SiO n S Introduction

Numerical method

- HDHB approach

- Key features

- FE implementation

" Advantages of HDHB approach Application
- Plunging 1D string
o Allows for rapid computation of steady state solutions for - 2D dragonfly wing
. . . - Oscillating 3D airfoil
time-periodic problems Conelusions

o Can be orders of magnitude faster than time-marching

a Hasy implementation into computational fluid and structural dynamics codes

o No major changes need to be made to the existing FE data structure
" Drawbacks

o Aliasing may occur, especially for highly nonlinear problems;
Dealiasing techniques have been developed

o More memory 1s required compared to time-marching schemes;
May become an issue for large-scale problems

m  Fyture research

o Investigate more efficient ways to solve the HDHB system of equations
(other than the standard NR method presented here)

o Coupling HDHB solvers for multiphysics problems, i.e., acroelastic problems

10/06/2010 University of Oklahoma LaBryer 18
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