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Introduction 

  Time-periodic phenomena are abundant in nature 
  Can be analyzed experimentally or numerically 
  Traditional approach to numerical simulation: 

  Capture the physics in language of  mathematics 
  Partial differential equations (PDEs) 
  Natural oscillators tend to present themselves 

as nonlinear dynamical systems 
  Discretize the governing equations in space 

  Finite element method (FE) for structures 
  Temporal discretization 

  Time-marching methods (Newmark, HHTα) 
  Computationally expensive; transient effects 
  Efficient alternatives exist (harmonic balance) 
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Introduction 

  Presented here: a novel time-domain solution method 
  High dimensional harmonic balance (HDHB) approach 
  Discuss its key features and limitations 
  Rapid computation of  steady state solutions 
  Provide a framework for implementation into a nonlinear FE solver 

  Demonstrate its capabilities 
  Solve three structural dynamics problems 
  Relevant to the field of  flapping flight  
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Harmonic balance theory 

  Begin with a general nonlinear dynamical system (FE eqns) 

  Assume the field variables are smooth and periodic in time 
  Fourier series expansion of  state vector and nonlinear restoring force vector 

  Classical harmonic balance (HB) method 
  Approach to solve for the Fourier coefficients Xk(t) 
  Substitute Fourier expansions for X(t) and F(t) into the governing equation 
  Perform a Galerkin projection w.r.t. the Fourier modes to obtain 

  Using this procedure to solve large-scale nonlinear systems can be cumbersome 
  Overcome with the high dimensional harmonic balance (HDHB) approach 
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HDHB approach 

  Problem is cast from Fourier domain into the time domain 

  Fourier coefficients are related to time domain variables  
through a discrete Fourier transform operator E  

  The time domain variables are represented  
at uniformly spaced intervals for one  
period of  oscillation 

  HDHB system can be written in terms of  a time-derivative operator D 

  Solution can be obtained numerically using an iterative root-finding scheme; 
 Newton-Raphson method or pseudo-time marching  
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Features of  the HDHB approach 

  Advantages     
  Solves for one period of  steady-state 

response; computationally efficient 
  Solved for in the time-domain 
  Easy implementation into large-scale 

computational fluid and structural 
dynamics codes 

  Drawbacks  

Possibility of  aliasing 

  Can produce nonphysical solutions 
  Due to treatment of  nonlinear terms 
  Developed dealiasing techniques 

  Involves filtering of  the field variables 

Memory required > time-marching 
  Fully populated solution arrays; NT x Ndof 
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Implementation into a FE solver 

  Framework presented here has been successfully  
implemented into an in-house FE solver named ATFEM 

  Begin with HDHB formulation of  FE equations 

  Solve the HDHB system using the Newton-Raphson (NR) method 
  The solution array (Q) requires an initial guess; likely to be incorrect 
  The total residual (RTOT) is the sum of  partial residuals 

  Incrementally adjust Q using the Jacobian matrix (J) until RTOT = 0 

  No major modifications to the FE data structure are required! 
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Plunging 1D string 

  String membrane stretched between two rigid airfoils 
  Geometrically nonlinear 1D string elements 

  Material properties: 
  Result in a first natural  

frequency of  f1 = 14.2 Hz  

  Flapping is implemented  
with time-periodic boundary conditions 
  Inertial loading is related to the flapping acceleration 
  Simulations are normalized using the inertial loading parameter F 
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Results for the plunging string 
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HHTα Solution HDHB2 Solution 

  Compare solutions obtained using the HDHB and HHTα time-marching methods 
  Shown below: simulations for F = 100 (A = 0.05 and f = 7.1 Hz) 
  HDHB approach renders steady state solutions 102-103 times faster than HHTα 

Denotes NH = 2 
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Frequency response curves 

  Generated by incrementally advancing the frequency (ω) forward or backward 
  Previous solution is used as the initial guess for the NR solver 
  Frequency marching generates  

two solution branches:  
upper (+) and lower (-)  

  Focus on the normalized  
midpoint Z-deflection  
(wL/2/L0) 

  Favorable comparison  
between HDHB and HHTα  
solutions for F = 0.1 and 1 

  Aliasing errors occur for  
F = 10 and 100; highly nonlinear 

  Dealiasing techniques are not  
effective for this problem 
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Frequency response curve for F = 1 
Resonance peak at f = 14.6 Hz (ω/ω1 = 1.03)  
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Flapping dragonfly wing 

  Modeled using geometrically nonlinear von Karman plate elements 
  Flapping motion—prescribed sinusoidal rotation about the root 

  Material properties 

  HDHB solutions require amplitude marching (incremented by ΔA) 
  HHTα solutions require marching from t = 0s to 2s with Δt = 10-5s (τ~2 days) 
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Dragonfly hindwing specimen Finite element model 

Strongest veins along leading edge (dark blue) 
E = 60 Gpa  t = 0.135 mm 
Anal veins near root (red) 
E = 12 GPa  t = 0.135 mm 
Wing membrane (light blue) 
E = 3.7 GPa  t = 0.025 mm 

Density   ρ = 1200 kg/m3 

Viscous damping  C = 0.05  
Length   L = 3 cm 
Poisson ratio  ν = 0.25 
1st natural frequency  f1 ≈ 5f0 
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HHTα solution 
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Rear view Isometric view 

  Evolution of  a transient response 



LaBryer   10/06/2010 University of  Oklahoma 

HDHB6 solution 

13  

Isometric view Rear view 

  Renders steady state response 
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  Focus on peak displacement  
amplitudes (wL) 

  Increasing NH requires more  
NR iterations and a smaller  
amplitude increment (ΔA) 

  Normalized computation  
times (τ*) can be decreased  
by orders of  magnitude 
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Oscillating 3D continuum airfoil 

  Modeled using geometrically nonlinear hexahedral  
elements with isoparametric interpolation (Q1) 

  Approximately 104 spatial degrees of  freedom 
  Material properties 

  Prescribed sinusoidal boundary conditions at z = L 

  HDHB solutions require amplitude marching  
with ΔA = 0.1m 

  HHTα solutions require marching from  
t = 0s to 5s with Δt = 2 x10-5s (τ~9 days) 
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Finite element model 

Elastic modulus  E = 70 GPa 
Density   ρ = 2700 kg/m3 

Length   L = 3.41 m 
Poisson ratio  ν = 0.33 
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  Focus on first principal stresses (σ1) at a fixed location in space 
  Compare maximum stress (σ1

max) for each period of  oscillation 

σ1
max 

Observe  
σ1 here 
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Computational economy 

  Compare steady state values for  
maximum first principal stress (σ1

max) 
  Normalized computation times (τ*) 

indicate computational economy 
  For this problem, choice of  NH  

does not affect # of  NR iterations 
  Required memory increases  

dramatically with NH,  
necessitating 
the use of  a  
supercomputer 
(OSCER) 

➡  Memory can be a  
key limitation to  
HDHB approach 
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Conclusions 

  Advantages of  HDHB approach 
  Allows for rapid computation of  steady state solutions for  

time-periodic problems 
  Can be orders of  magnitude faster than time-marching 
  Easy implementation into computational fluid and structural dynamics codes 
  No major changes need to be made to the existing FE data structure 

  Drawbacks 
  Aliasing may occur, especially for highly nonlinear problems; 

Dealiasing techniques have been developed 
  More memory is required compared to time-marching schemes; 

May become an issue for large-scale problems 

  Future research 
  Investigate more efficient ways to solve the HDHB system of  equations  

(other than the standard NR method presented here) 
  Coupling HDHB solvers for multiphysics problems, i.e., aeroelastic problems 
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