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Introduction 

  Time-periodic phenomena are abundant in nature 
  Can be analyzed experimentally or numerically 
  Traditional approach to numerical simulation: 

  Capture the physics in language of  mathematics 
  Partial differential equations (PDEs) 
  Natural oscillators tend to present themselves 

as nonlinear dynamical systems 
  Discretize the governing equations in space 

  Finite element method (FE) for structures 
  Temporal discretization 

  Time-marching methods (Newmark, HHTα) 
  Computationally expensive; transient effects 
  Efficient alternatives exist (harmonic balance) 
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Introduction 

  Presented here: a novel time-domain solution method 
  High dimensional harmonic balance (HDHB) approach 
  Discuss its key features and limitations 
  Rapid computation of  steady state solutions 
  Provide a framework for implementation into a nonlinear FE solver 

  Demonstrate its capabilities 
  Solve three structural dynamics problems 
  Relevant to the field of  flapping flight  
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Harmonic balance theory 

  Begin with a general nonlinear dynamical system (FE eqns) 

  Assume the field variables are smooth and periodic in time 
  Fourier series expansion of  state vector and nonlinear restoring force vector 

  Classical harmonic balance (HB) method 
  Approach to solve for the Fourier coefficients Xk(t) 
  Substitute Fourier expansions for X(t) and F(t) into the governing equation 
  Perform a Galerkin projection w.r.t. the Fourier modes to obtain 

  Using this procedure to solve large-scale nonlinear systems can be cumbersome 
  Overcome with the high dimensional harmonic balance (HDHB) approach 
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HDHB approach 

  Problem is cast from Fourier domain into the time domain 

  Fourier coefficients are related to time domain variables  
through a discrete Fourier transform operator E  

  The time domain variables are represented  
at uniformly spaced intervals for one  
period of  oscillation 

  HDHB system can be written in terms of  a time-derivative operator D 

  Solution can be obtained numerically using an iterative root-finding scheme; 
 Newton-Raphson method or pseudo-time marching  
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Features of  the HDHB approach 

  Advantages     
  Solves for one period of  steady-state 

response; computationally efficient 
  Solved for in the time-domain 
  Easy implementation into large-scale 

computational fluid and structural 
dynamics codes 

  Drawbacks  

Possibility of  aliasing 

  Can produce nonphysical solutions 
  Due to treatment of  nonlinear terms 
  Developed dealiasing techniques 

  Involves filtering of  the field variables 

Memory required > time-marching 
  Fully populated solution arrays; NT x Ndof 
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Implementation into a FE solver 

  Framework presented here has been successfully  
implemented into an in-house FE solver named ATFEM 

  Begin with HDHB formulation of  FE equations 

  Solve the HDHB system using the Newton-Raphson (NR) method 
  The solution array (Q) requires an initial guess; likely to be incorrect 
  The total residual (RTOT) is the sum of  partial residuals 

  Incrementally adjust Q using the Jacobian matrix (J) until RTOT = 0 

  No major modifications to the FE data structure are required! 
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Readily available in any FE solver 
with implicit time-integration 
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Plunging 1D string 

  String membrane stretched between two rigid airfoils 
  Geometrically nonlinear 1D string elements 

  Material properties: 
  Result in a first natural  

frequency of  f1 = 14.2 Hz  

  Flapping is implemented  
with time-periodic boundary conditions 
  Inertial loading is related to the flapping acceleration 
  Simulations are normalized using the inertial loading parameter F 
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Results for the plunging string 
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HHTα Solution HDHB2 Solution 

  Compare solutions obtained using the HDHB and HHTα time-marching methods 
  Shown below: simulations for F = 100 (A = 0.05 and f = 7.1 Hz) 
  HDHB approach renders steady state solutions 102-103 times faster than HHTα 

Denotes NH = 2 
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Frequency response curves 

  Generated by incrementally advancing the frequency (ω) forward or backward 
  Previous solution is used as the initial guess for the NR solver 
  Frequency marching generates  

two solution branches:  
upper (+) and lower (-)  

  Focus on the normalized  
midpoint Z-deflection  
(wL/2/L0) 

  Favorable comparison  
between HDHB and HHTα  
solutions for F = 0.1 and 1 

  Aliasing errors occur for  
F = 10 and 100; highly nonlinear 

  Dealiasing techniques are not  
effective for this problem 
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Frequency response curve for F = 1 
Resonance peak at f = 14.6 Hz (ω/ω1 = 1.03)  
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Flapping dragonfly wing 

  Modeled using geometrically nonlinear von Karman plate elements 
  Flapping motion—prescribed sinusoidal rotation about the root 

  Material properties 

  HDHB solutions require amplitude marching (incremented by ΔA) 
  HHTα solutions require marching from t = 0s to 2s with Δt = 10-5s (τ~2 days) 
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Dragonfly hindwing specimen Finite element model 

Strongest veins along leading edge (dark blue) 
E = 60 Gpa  t = 0.135 mm 
Anal veins near root (red) 
E = 12 GPa  t = 0.135 mm 
Wing membrane (light blue) 
E = 3.7 GPa  t = 0.025 mm 

Density   ρ = 1200 kg/m3 

Viscous damping  C = 0.05  
Length   L = 3 cm 
Poisson ratio  ν = 0.25 
1st natural frequency  f1 ≈ 5f0 
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HHTα solution 
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Rear view Isometric view 

  Evolution of  a transient response 
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HDHB6 solution 
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Isometric view Rear view 

  Renders steady state response 
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Computational economy 
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  Focus on peak displacement  
amplitudes (wL) 

  Increasing NH requires more  
NR iterations and a smaller  
amplitude increment (ΔA) 

  Normalized computation  
times (τ*) can be decreased  
by orders of  magnitude 
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Oscillating 3D continuum airfoil 

  Modeled using geometrically nonlinear hexahedral  
elements with isoparametric interpolation (Q1) 

  Approximately 104 spatial degrees of  freedom 
  Material properties 

  Prescribed sinusoidal boundary conditions at z = L 

  HDHB solutions require amplitude marching  
with ΔA = 0.1m 

  HHTα solutions require marching from  
t = 0s to 5s with Δt = 2 x10-5s (τ~9 days) 
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Finite element model 

Elastic modulus  E = 70 GPa 
Density   ρ = 2700 kg/m3 

Length   L = 3.41 m 
Poisson ratio  ν = 0.33 
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  Focus on first principal stresses (σ1) at a fixed location in space 
  Compare maximum stress (σ1

max) for each period of  oscillation 

σ1
max 

Observe  
σ1 here 
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Computational economy 

  Compare steady state values for  
maximum first principal stress (σ1

max) 
  Normalized computation times (τ*) 

indicate computational economy 
  For this problem, choice of  NH  

does not affect # of  NR iterations 
  Required memory increases  

dramatically with NH,  
necessitating 
the use of  a  
supercomputer 
(OSCER) 

➡  Memory can be a  
key limitation to  
HDHB approach 
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Conclusions 

  Advantages of  HDHB approach 
  Allows for rapid computation of  steady state solutions for  

time-periodic problems 
  Can be orders of  magnitude faster than time-marching 
  Easy implementation into computational fluid and structural dynamics codes 
  No major changes need to be made to the existing FE data structure 

  Drawbacks 
  Aliasing may occur, especially for highly nonlinear problems; 

Dealiasing techniques have been developed 
  More memory is required compared to time-marching schemes; 

May become an issue for large-scale problems 

  Future research 
  Investigate more efficient ways to solve the HDHB system of  equations  

(other than the standard NR method presented here) 
  Coupling HDHB solvers for multiphysics problems, i.e., aeroelastic problems 
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